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ABSTRACT : In this paper, a funnel dynamic surface control (FDSC) scheme is proposed for a class of 

uncertain nonlinear systems. A new funnel variable is used in the controller design, which achieves prescribed 

tracking error performance and avoids the potential singularity problem of prescribed performance controls 

(PPC). Moreover, the transient and steady performance can be significantly improved. By introducing the 

compensation terms of the boundary layer errors at the recursive steps of dynamic surface control (DSC), the 

"explosion of complexity" problem is eliminated and the design procedure is simplified. The key advantage of 

the compensation terms is that the asymptotic tracking with zero error can be held and only one tuning 

parameter of compensation terms is needed, which greatly reduces the computational burden and makes it easy 

to implement. Finally, comparative simulations and experimental results have shown that the proposed scheme 

achieves better tracking performance. 
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I. INTRODUCTION 
In the past decades, much research effort has been concentrated on the problem of controlling nonlinear 

uncertain systems. Significant control developments have been achieved, including adaptive control, robust 

control, sliding mode control, etc. Especially, the adaptive backstepping approach has been applied as a 

powerful and effective design method for a large class of nonlinear systems, which are particularly useful for 

systems in the strict-feedback form. Nevertheless, as many authors have pointed out in [1, 2], a drawback in the 

traditional backstepping design is the issue of "explosion of complexity" in the step-by-step design procedure. 

That is, the virtual status and virtual controls are introduced into the backstepping technique [3]. And then the 

nonlinear functions, virtual controls, should be differentiated repeatedly, which implies that the complexity of 

controller design procedure grows drastically with the increase of the system order [4]. It inevitably leads to a 

complicated controller with heavy computation costs and limits its practical implement. 

To deal with the issue of the backstepping-based approach, Swaroop et al. [5] proposed a new recursive 

approach named DSC for a class of strict-feedback nonlinear systems. This issue is eliminated by introducing 

low pass filters at the traditional backstepping scheme, which makes the virtual control laws passed through the 

filters at each design step to replace the differentiation operator.  What is more, an extra advantage is that it 

significantly relaxes the requirement that the derivatives of the system functions and reference signal up to a 

certain order. In [2], this technique is extended to the adaptive control approach, namely the adaptive dynamic 

surface control. Consequently, a large number of applications have been put into effect by the DSC technique to 

design low complexity controllers [6–8]. However, as revealed by [9], these adaptive DSC systems with linear 

low pass filters suffer from large tracking-error bounds, which implies that the tracking performance of DSC 

approach highly depends on the filter time constants. To address this problem and improve the control 

performance, the command filter [10], Levant's differentiator [11], the tracking differentiator [12], the robust 

second-order filters [13] were developed, where these filters were employed to replace the first-order filters in 

the DSC design. Besides, the influence of boundary layer errors on control systems, which would degrade 

tracking accuracy, is still not considered. On the other hand, in above DSC control works, they only achieve the 

bounded-error trajectory tracking, that is the tracking error can be confined to some small residual sets, rather 

than the asymptotic tracking with zero error. Moreover, the size of the residual sets is often unknown. Also, it is 

worthy to point out that, until now, a few adaptive DSC control can guarantee the transient as well as the steady-

state performance. Therefore, it is still a challenging and valuable work to investigate the adaptive DSC control 

strategy for uncertain nonlinear systems. 

Recently, Bechlioulis and Rovithakis [14] developed a new noticeable prescribed performance control 

(PPC) for a class of feedback linearisable nonlinear systems to guarantee a expected tracking performance. The 

key idea of this methodology is that the prescribed performance function (PPF) is provided to transform the 
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tracking error of an original system into a new error system. A tracking error of the transient property and 

steady-state performance are characterized by PPF. Then, the new transformed error is incorporated into the 

following controller design. This approach achieves the convergence rate of tracking error no less than a 

prescribed value and the maximum overshoot less than a sufficiently small constant [15]. And then this 

technique was successfully extended to strict feedback nonlinear systems by [16]. Since then, several 

applications and improvements based on this method have been developed. Nevertheless, as S. I. Han et al. 

pointed out in [17], the PPC method may suffer from a potential singularity problem since the inverse 

transformation function includes certain constraint conditions. This may result in violation of the prescribed 

performance constraints and even the instability of the control system [18]. On the contrary to PPC, funnel 

control (FC), which is developed by Ilchman et al. [19, 20], is a “proportional” (memoryless) method to 

guarantee a prescribed transient performance and asymptotic tracking of the control systems. Therefore, the 

complexity of identification and the estimation of systems can be bypassed and the measurement noises and 

parameter uncertainties can be tolerated. Then, Hackl et al. successfully extended this technique to more generic 

systems [21, 22]. However, the application of FC is limited to a class of systems S with relative degree one or 

two [23], thus, in [24], S. I. Han et al. proposed a new transformation function to avoid this obstacle and made 

both theoretical studies and practical application more convenient. 

Inspired by previous researches, this paper will present a new funnel dynamic surface control (FDSC) 

scheme to guarantee the transient behavior and achieve the asymptotic output tracking for uncertain nonlinear 

strict feedback systems. Compared to the relevant existing works, the main contributions of this paper are 

summarized below. 

i. By employing the output tracking error in the funnel constraint function, FC method is adopted in the 

DSC procedure. Compared with current PPC control methods, the potential singularity problem is avoided. 

Moreover, the prescribed transient and steady-state performance of the closed-loop system can be ensured, 

meanwhile the output tracking error is always confined within the prescribed funnel boundary. 

ii. Instead of utilizing the linear first-order filters, we employ the nonlinear filters with time-varying 

integral functions to remove the issue of "explosion of complexity". Besides, a common compensation term was 

introduced in order to eliminate the effects raised by boundary layer errors. Based on Lyapunov stability 

theorem, it is proven that the zero-error tracking can be achieved. 

iii. The proposed control scheme only contains one adaptive tuning parameter of the compensator term 

in the nonlinear filters so that the implementation of the adaptive law is much easier than backstepping control 

and conventional DSC. Furthermore, the computational burden is significantly reduced and the design procedure 

is greatly simplified due to the DSC scheme. 

 

II. PROBLEM STATEMENT AND PRELIMINARIES 

2.1 SYSTEM FORMULATION 

Consider an uncertain nonlinear strict feedback system below: 

   

   

1, 1, , 1,

,

   

 

 


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q
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1,y x                                                                                                             (1) 

where  1, , , 1, , ,      
T i n

i i nx x x i n x are the system states; 1, , ii nq are unknown constant 

parameters;   :   n

if and   : , 1, ,    n

ig i n  are known smooth differentiable functions; 

u  and y  are the system input and output signals, respectively. 

Assumption 2.1: The functions  ig  satisfy   0g , 1, ,  i ig x i n  in where 0g  a positive constant. 

Assumption 2.2: The desired trajectory  dy t  is continuous, differentiable, bounded and available. 

Assumption 2.3: There are sufficient smooth and integrable positive functions  i td  satisfying 

    *

, ,1 ,1 1,     
j

i i jt i n j nd d  

 
0

, 0  
t

i is ds td d                                                                                   (2) 

with 
*

,i jd  and id  are positive constants. 

Remark 2.1: Assumptions 2.1 and 2.2 are common restrictive conditions in adaptive state feedback DSC 

schemes, which are adopted in many existing literatures, such as [9, 10], [13], [25]. 
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Remark 2.2: According to Assumption 2.3, the time-varying integral functions  ,2  i t i nd  in filters are 

sufficiently smooth bounded functions, which are used in the next stability analysis. Some examples for  i td  

satisfying the Assumption 2.3 are 1

2 3

a

a t al
,

 te lm , where 1 2 3, , , ,a a a m l are arbitrary positive constants. In this 

paper, we chose   
 it

i it e ld m . 

Lemma 2.1: [25] The following inequalities hold all the time 

0 tanh , , 0,
 

     
 


a

a a a b
b

                                                             (3) 

1, 0, 0,or 0, 0.    


c
c d c d

c d
                                                            (4) 

Lemma 2.2: [26] If the functions    , h t h t  are bounded and  2

0
lim , 0


   
t

t
h s ds t , then 

 lim 0.



t

h t                                                                             (5) 

The control objectives are that: 

i. Design a state feedback control u  such that the system output signal y  asymptotically tracks a reference 

signal dy ; ii. Ensure that the tracking error       y de t y t y t  is always satisfied the prescribed funnel 

boundary. 

 

2.2 FUNNEL CONTROL 

As pointed out in [17, 23], a time-varying gain  tr  is introduced to control systems of class of S with relative 

degree r=1 or 2 The systems S is governed by the funnel controller with  u t   the control input 

          , , , u t F t t e t e tfr y                                                          (6) 

by evaluating the vertical distance 

      vd t F t e tf
                                                                        (7) 

between the the funnel boundary function  F tf  and the Euclidian norm  e t  of error at real time. 

 The funnel boundary    1 /F t tf j  is given by the reciprocal of an arbitrarily chosen bounded, 

continuous function   0tj  for all 0t  with  0sup   t tj . The funnel boundary is defined as the set 

    : 1 .    nF t e t e tf j                                                             (8) 

 The control gain of  r  is adjusted by 

      
 

   
, , 



t
F t t e t

F t e t
f

f

y
r y                                                           (9) 

to ensure that the error  e t  evolves inside the funnel  F tf .  ty  is the scaling factor. One can conclude 

that as the error  e t  approaches the boundary  F tf , the control gain  r  will increase. Conversely, if the 

error  e t  becomes small, the control gain  r  will decrease. 

According to [28], a proper funnel boundary function to prescribe the performance is defined as 

  0 ,

 tF t e b

f s s                                                                           (10) 

where 0s  is the initial value of  F tf , and   0lim , 0 


  
t

F tfs s s , and     00 0   e Ff s s , and 

b  is the convergence speed of exponential function. 0 , ,s s b are the design parameters. 

Then, in this paper, the following funnel error variable 1S  is defined as 

 
 

   
1 ,



e t
S t

F t e tf

                                                                      (11) 
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where the funnel boundary  F tf  satisfies the condition in (8). This funnel error variable 
1S  will be utilized to 

ensure the prescribed output performance for system (1). 

Remark 2.3: In (11), the funnel error variable 
1S  is not necessarily limited by S systems because of the 

condition  in (8), thus, the proposed funnel control can be used in various practice. Compared with PPC [16, 28], 

furthermore, the potential singularity problem is overcome since the inverse of the transformed error is avoided. 

 

III. CONTROLLER DESIGN AND STABILITY ANALYSIS 
In this section, the design procedure of the adaptive DSC based on the funnel variable with rigorously stability 

analysis will derived. 

 

3.1 ADAPTIVE DSC CONTROLLER DESIGN 

Step 1. From (11), define the funnel error surface as 

 1 ,


y

y

e
S t

F ef

                                                                         (12) 

whose derivative of 1S  with respect to time is 

 
1 1 12

,


  



 y y

y y

y

F e F e
S F e F e

F e

f f

f f

f

r r                                                          (13) 

where  
2

1 1/  yF efr . 

Choose virtual control law 2dx  and the adaptive law for 1


q  as follows: 

1 1
2 1 1

1 1

1
,

 
     
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 

 
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f f

q
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                                                            (14) 

1 1 1 1 1 ,


f S Fq g r                                                                                                 (15) 

where 1c  and 1g  are positive design parameters and 1


q  is the estimation of 1q . 

Consider the following Lyapunov function as 

2 2

1 1 1

1

1 1
,

2 2
  V S q

g
                                                                       (16) 

where 1 1 1 


q q q . 

 Considering (13), (14) and (15), the time derivative of 1V  becomes 

 2

1 1 1 1 1 2 2 1.   
dV c S F g x x Sf r                                                           (17) 

 To avoid the issue of "explosion of complexity", let 2dx  pass through an adaptive filter. The dynamics 

of the filter are expressed as 

 
 

2

2 2
2 2 2 2 1 1 1

2
2 2

2

,

tanh

   
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t
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d
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   2 20 0 , dz x                                                                                                   (18) 

where 2 2 2:  dy z x  is the first boundary layer error, 


M denotes the estimate of M  that will be presented later; 

 2 td  is defined in Assumption 2.3; 2t  is filter time constant. 

Step 2: Define the second surface error 

2 2 2 , S x z                                                                           (19) 

differentiating (19) yields 

 
 

2

2 2
2 2 2 2 3 1 1 1

2 2
2 2

2

.

tanh

    
 

  
 






y y M
S f g x g S F

y
y M t

t

fq r
t

d
d

                             (20) 
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 Choose virtual control law 
3dx  and the adaptive law for 2


q  as follows: 

 
 

2

2 2
3 2 2 2 2 1 1 1

2 2 2
2 2

2

1
2 ,

tanh

 
 
 

       
    
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


d

y y M
x c S f g S F

g y
y M t

t

q r
t

d
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                 (21) 

2 2 2 2 ,


S fq g                                                                                                                      (22) 

where 
2c and 

2g  are positive design parameters and 2


q  is the estimation of 

2q . 

 Consider the following Lyapunov function as 

2 2

2 1 2 2

2

1 1
,

2 2
   V V S q

g
                                                                    (23) 

where 2 2 2 


q q q . 

 Considering (20), (21) and (22), the time derivative of 2V becomes 

 2 2

2 1 1 2 2 1 1 1 2 2 2 3 3 .     
dV c S c S g S y F g S x xfr                                             (24) 

Let 3dx  pass through the following adaptive filter 

 
 

2

3 3
3 3 3 3 2 2

3
3 3

3

,

tanh

   
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 


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d
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   3 30 0 , dz x                                                                                                        (25) 

where 3 3 3:  dy z x  is the second boundary layer error;  3 td  is defined in Assumption 2.3; 3t  is filter time 

constant. 

Step i  3 1  i n : Similar to Step 2, we define the ith surface error 

, i i iS x z                                                                              (26) 

then 
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                                 (27) 

 Choose virtual control law 1i dx  and the adaptive law for 

iq  as follows: 

 
 
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1
2 ,
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q
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d
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                     (28) 

,

i i i iS fq g                                                                                                                       (29) 

where ic and ig  are positive design parameters and 

iq  is the estimation of iq . 

 Consider the following Lyapunov function as 

2 2

1

1 1
,

2 2
   

i i i i

i

V V S q
g

                                                                (30) 

where  



i i iq q q . 

 Considering (27), (28) and (29), the time derivative of iV becomes 

 
1

2

1 1 1 2 1 1 1

1 2

.


  

 

      
i i

i k k k k k i i i i d

k k

V c S g S y F g S y g S x xfr                               (31) 
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Let 1i dx  pass through the following adaptive filter 
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   1 10 0 , i i dz x                                                                                                       (32) 

where 1 1 1:   i i i dy z x  is the second boundary layer error;  1i td  is defined in Assumption 2.3; 1it  is filter 

time constant. 

Step n: Define the nth surface error 

, n n nS x z                                                                          (33) 

we have 

 
 
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1 1.

tanh

     
 

  
 





n n
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n n

n
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y
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                             (34) 

 Choose actual control law u  and the adaptive law for 

nq  as follows: 

 
 

2

1 1

1
2 ,

tanh

 
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                      (35) 

,

n n n nS fq g                                                                                                                         (36) 

where nc and ng  are positive design parameters and 

nq  is the estimation of nq . 

 Consider the following Lyapunov function as 

2 2

1

1 1
,

2 2
   

n n n n

n

V V S q
g

                                                              (37) 

where  



n n nq q q . 

 Considering (34), (35) and (36), the time derivative of nV becomes 

1
2

1 1 1 2 1

1 2

.




 

    
n n

n k k k k k

k k

V c S g S y F g S yfr                                               (38) 

Remark 3.1: The terms 
    

2

tanh /






i i

i i i i

y M

y y t M t

t

d d
 of the nonlinear filters are designed to compensate the 

effect of the boundary layer errors iy . Furthermore, the issue of "explosion of complexity" can also be avoided. 

 

3.2 SATBILITY ANALYSIS 

Here, the asymptotic stability and the convergence of the closed-loop system is proven based on Lyapunov 

theory. 

By applying (14), (21), (28) and (35), the time derivatives of all surface errors can be obtained as 

1 1 1 1 1 1 1 1 2 1 1 2 ,     S c S f F g S F g y Ff f fqr r r  

2 2 2 1 1 1 2 2 2 3 2 3 ,      S c S g S f g S g yr q  

1 1 1 1,i 3, ,n 1            i i i i i i i i i i iS c S g S f g S g yq  

1 1 .     
n n n n n n nS c S g S fq                                                                              (39) 

Considering (18), (25) and (32), the derivatives of the boundary layer errors 1 1 1   i i i dy z x  are 
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          (40) 

where  2 B  and  1 iB  are continuous functions. 

Now, let the Lyapunov function be defined as 

 
1 1

2 2

1 1

1 1

1 1
,

2 2

 

 

 

    
n n

n i i

i i

V V y M td
h

                                               (41) 

where h  is positive design parameters. 

We have the following theorem: 

Theorem : Consider the closed-loop control system (1) with the virtual control laws ix  (14), (21) and (28), and 

the control law  u t  (35), the adaptive laws 

iq  (15), (22), (29), (36) and 


M  (47), subject to Assumption 2.1–

2.3. For   20 V C  and 
2 2 2

1   
d d dy y y C , where 1C , 2C are given positive constants, then, if the initial 

condition of tracking error  ye t  fulfills    0 0ye Ff
, then there exist the following properties: 

i. All signals in the closed-loop system are semi-globally bounded. 

ii. The output tracking error  ye t  converges to zero asymptotically, besides it can be guaranteed within in a 

prescribed funnel boundary. 

Proof: Define the following compact sets: 

  2 2 2

1 1, , : ,       
T

d d d d d dy y y y y y C                                                    (42) 

  2 2 .  V t C                                                                                       (43) 

Note that 1 2   is also a compact set. Therefore, there exist unknown positive constant 1iM  such that 

 1 1, 1, ,n 1    i iB M i  on 1 2  . Let  2: max , ,  nM M M  and it is estimated by 


M , then 

taking the time derivative of (41) yields 
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 From Lemma 2.1, we have 
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then, (44) can be written 
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thus, the adaptive laws for 


M is chosen as 
1

1

1

ˆ ,i 1, ,n 1,

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
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
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i
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M yh                                                                 (47) 

then, we can obtain 
21

2 1

1 1 1
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n n
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i i
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V c S
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                                                                    (48) 

Integrating (48) over [0, t], we have 
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which implies that 1 1 2
ˆ ˆ, , , , , , , , ,


  n n nS S y y Mq q  are bounded. Consequently, we can deduce that 

1 2, , , , , n d ndx x x x  and u  are bounded. Moreover, from (49), we have 

   2

0
1

0 .



nt

i i

i

c S d Vi i                                                              (50) 

From Lemma 2.2, it is concluded that 

1lim 0,



t

S                                                                             (51) 

which implies that the asymptotic tracking is achieved due to (12). 

From (49) and (12), we have 

    
2

/ 2 0 , y ye F e Vf                                                           (52) 

if  0 0 1/ 2 V , then 

  22 0 2 0, yV F F ef f
                                                            (53) 

which means that 

 2 2 0, yF F ef f
                                                                    (54) 

thus, we can obtain 

1/ 2 . ye F Ff f
                                                                   (55) 

Therefore, all signals of the closed-loop systems are semi-globally bounded and the tracking error is always 

well-kept within the prescribed funnel boundary. This completes the proof.                                              
Remark 3.2: It is noted that our designed control strategy can guarantee both prescribed tracking performance 

and state steady.  Moreover, the computational load is greatly reduced due to the DSC technique, which makes 

the design process and the controller quite simple and practical. 

 

IV. SIMULATION RESULTSEXAMPLES 
In this section, two practical simulations are conducted to verify the effectiveness and the high performance of 

the proposed control design. 

Example 1. A single-link robot manipulator model [29] is considered whose motion dynamics expression can be 

given by 

1/ 2 sin ,

,

 





q uM q mgl q

y q

t
                                                                (57) 

where , , q q q  are the angular position, the velocity and acceleration, qM is the inertia, m is the link mass, 

29.8m/sg is the gravity, l is the length of the link, and ut  is the control force. 

Define 1 2, ,  
ux q x q u t , then (57) can be rewritten as 
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 

 
1 2 1

2 1 2

1

, 0 0.2,

0.5 sin / / , 0 0,

,

  


   
 




q q

x x x

x mgl x M u M x

y x

                                        (58) 

which implies that        1 1 1 1 2 1 2 1 2 1 20,g 1, , 0.5 sin / , , 1 / .    q qf x x f x x mgl x M g x x M  

 In this simulation, we choose 
20.5kg/m , 1kg, 1m  qM m l . The reference signal is given 

by 0.1sin 0.1cos2 dy t t . The selected funnel boundary function is   20.3 0.01 tF t ef . Based on the 

initialization technique, the design parameters and the initial conditions of adaptive mechanisms are set 

as   0.1

1 2 1 2 2 210, 4, 1, 3, 2, 0.01, 50        tc c t eg g h t d . By applying the DSC method and the 

proposed AFC strategy, simulation results are shown in Figures 1–3, from which it can be observed that our 

proposed control method has smaller overshoots and gains better control performance. 

 

 
Figure1: Tracking performance for Example 1. 

 
Figure2: Tracking error for Example 1. 
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Figure3: Control input for Example 1. 

 

Example 2. To further show the high performance of the proposed algorithm, an electromechanical dynamic 

system [30] is expressed as 

sin ,

.

  


  

 

 
m m

e m m m M

Dq B q N q

M H V K q

t

t t
                                                              (59) 

Define 1 2 3, , ,   
m mx q x q x u Vt , then (59) can be rewritten as 

 

 

1 2

2 1 2 3

3 2 3

1

,

sin / / ,

/ / ,

,




    


   
 






m

m e e

x x

x N x B x D x D

x K x Hx M u M

y x

                                              (60) 

which implies that 

         1 1 1 1 2 2 1 2 2 2 3 3 2 30,g 1, sin , 1/ , ,        m mf x x f x N x B x g x D f x K x Hx .  

 3 3 1 / eg x M . The parameters are set as 1, 0.05, 1, 10, 0.5, 10     e m mD M B K H N . 

 Then, the initial values of the system (60) are chosen as    0 0.2,0.1,0
T

x . The reference signal 

is  0.1sin , 0 0.2 d dy t y . The funnel boundary function  F tf  is set the same as Example 1. Similar as 

Example 1, by introducing the initialization technique, the design parameters and the initial conditions of 

adaptive mechanisms are set as 

 1 2 3 1 2 3 2 3 225, 15, 8, 1, 5, 3, 2, 0.01,         c c c tg g g h t t d  0.6 0.1

350 , 100 t te t ed . By 

applying the DSC method and the proposed AFC strategy, simulation results are shown in Figures 4–6, from 

which it is clear that the control performance has been improved significantly and prescribed tracking 

performance has been achieved. 
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Figure4: Tracking performance for Example 2. 

 
Figure5: Tracking error for Example 2. 

 
Figure6: Control input for Example 2. 

 

V. CONCLUSION 
 In this paper, an improved adaptive funnel DSC method has been proposed for uncertain strict feedback 

systems. Incorporating the funnel boundary function into DSC technique, we have shown that the new control 

design can guarantee both the prescribed transient boundary and steady-state performance. Moreover, it has 

been proved that the controller design procedure and the computational costs can be significantly alleviated due 

to DSC. On the other hand, by introducing the compensation terms of boundary layer errors in each step of 

filters, the favorable asymptotic convergence can be achieved. The proposed control methodology of this paper 

is validated through simulation results. 
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